banner

News

Apr 20, 2024

Late acquisition of the rTCA carbon fixation pathway by Chlorobi

Nature Ecology & Evolution (2023)Cite this article

Metrics details

The reverse tricarboxylic acid (rTCA) cycle is touted as a primordial mode of carbon fixation due to its autocatalytic propensity and oxygen intolerance. Despite this inferred antiquity, however, the earliest rock record affords scant supporting evidence. In fact, based on the chimeric inheritance of rTCA cycle steps within the Chlorobiaceae, even the use of the chemical fossil record of this group is now subject to question. While the 1.64-billion-year-old Barney Creek Formation contains chemical fossils of the earliest known putative Chlorobiaceae-derived carotenoids, interferences from the accompanying hydrocarbon matrix have hitherto precluded the carbon isotope measurements necessary to establish the physiology of the organisms that produced them. Overcoming this obstacle, here we report a suite of compound-specific carbon isotope measurements identifying a cyanobacterially dominated ecosystem featuring heterotrophic bacteria. We demonstrate chlorobactane is 13C-depleted when compared to contemporary equivalents, showing only slight 13C-enrichment over co-existing cyanobacterial carotenoids. The absence of this diagnostic isotopic fingerprint, in turn, confirms phylogenomic hypotheses that call for the late assembly of the rTCA cycle and, thus, the delayed acquisition of autotrophy within the Chlorobiaceae. We suggest that progressive oxygenation of the Earth System caused an increase in the marine sulfate inventory thereby providing the selective pressure to fuel the Neoproterozoic shift towards energy-efficient photoautotrophy within the Chlorobiaceae.

This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

All data generated during this study are included within the Supplementary information and are available from the corresponding authors upon request.

Ward, L. M. & Shih, P. M. The evolution and productivity of carbon fixation pathways in response to changes in oxygen concentration over geological time. Free Radic. Biol. Med. 140, 188–199 (2019).

Article CAS PubMed Google Scholar

Hartman, H. Speculations on the origin and evolution of metabolism. J. Mol. Evolution 4, 359–370 (1975).

Article CAS Google Scholar

Wächtershäuser, G. Evolution of the first metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200–204 (1990).

Article PubMed PubMed Central Google Scholar

Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

Article CAS PubMed Google Scholar

Kitadai, N., Kameya, M. & Fujishima, K. Origin of the reductive tricarboxylic acid (rTCA) cycle-type CO(2) fixation: a perspective. Life 7, 39 (2017).

Article PubMed Central Google Scholar

Overmann, J. in Sulfur Metabolism in Phototrophic Organisms (eds Hell, R. et al.) 375–396 (Springer, 2008).

Camacho, A., Walter, X. A., Picazo, A. & Zopfi, J. Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Front. Microbiol. 8, 323 (2017).

Article PubMed PubMed Central Google Scholar

Thompson, K. J., Simister, R. L., Hahn, A. S., Hallam, S. J. & Crowe, S. A. Nutrient acquisition and the metabolic potential of photoferrotrophic Chlorobi. Front. Microbiol. 8, 1212 (2017).

Article PubMed PubMed Central Google Scholar

Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. B 288, 20210675 (2021).

Article CAS PubMed PubMed Central Google Scholar

Magnabosco, C., Moore, K. R., Wolfe, J. M. & Fournier, G. P. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16, 179–189 (2018).

Article CAS PubMed PubMed Central Google Scholar

Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

Article CAS PubMed Google Scholar

Krügel, H., Krubasik, P., Weber, K., Saluz, H. P. & Sandmann, G. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1439, 57–64 (1999).

Article Google Scholar

Cui, X. et al. Niche expansion for phototrophic sulfur bacteria at the Proterozoic-Phanerozoic transition. Proc. Natl Acad. Sci. USA 117, 17599–17606 (2020).

Article CAS PubMed PubMed Central Google Scholar

Marin, J., Battistuzzi, F. U., Brown, A. C. & Hedges, S. B. The timetree of prokaryotes: new insights into their evolution and speciation. Mol. Biol. Evol. 34, 437–446 (2016).

Google Scholar

Paoletti, M. M. & Fournier, G. P. Chimeric inheritance and crown-group acquisitions of carbon fixation genes within Chlorobiales: origins of autotrophy in Chlorobiales and implication for geological biomarkers. PLoS ONE 17, e0275539 (2022).

Article CAS PubMed PubMed Central Google Scholar

Stal, L. J. & Moezelaar, R. Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21, 179–211 (1997).

Article CAS Google Scholar

Tang, K.-H. & Blankenship, R. E. Both forward and reverse TCA cycles operate in green sulfur bacteria. J. Biol. Chem. 285, 35848–35854 (2010).

Article CAS PubMed PubMed Central Google Scholar

Blair, N., Leu, A., Olsen, J., Kwong, E. & Des Marais, D. Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. Environ. Microbiol. 50, 996–1001 (1985).

Article CAS PubMed PubMed Central Google Scholar

DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

Article CAS Google Scholar

Badger, M. R. & Bek, E. J. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J. Exp. Bot. 59, 1525–1541 (2008).

Article CAS PubMed Google Scholar

Hanson, T. E. & Tabita, F. R. A ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl Acad. Sci. USA 98, 4397–4402 (2001).

Article CAS PubMed PubMed Central Google Scholar

Sirevåg, R., Buchanan, B. B., Berry, J. A. & Troughton, J. H. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35–38 (1977).

Article PubMed Google Scholar

Zyakun, A. M., Lunina, O. N., Prusakova, T. S., Pimenov, N. V. & Ivanov, M. V. Fractionation of stable carbon isotopes by photoautotrophically growing anoxygenic purple and green sulfur bacteria. Microbiology 78, 757–768 (2009).

Article CAS Google Scholar

Quandt, L., Gottschalk, G., Ziegler, H. & Stichler, W. Isotope discrimination by photosynthetic bacteria. FEMS Microbiol. Lett. 1, 125–128 (1977).

Article CAS Google Scholar

Fulton, J. M., Arthur, M. A., Thomas, B. & Freeman, K. H. Pigment carbon and nitrogen isotopic signatures in euxinic basins. Geobiology 16, 429–445 (2018).

Article CAS PubMed Google Scholar

Guy, R. D., Fogel, M. L. & Berry, J. A. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101, 37–47 (1993).

Article CAS PubMed PubMed Central Google Scholar

Garcia, A. K. et al. Effects of RuBisCO and CO2 concentration on cyanobacterial growth and carbon isotope fractionation. Geobiology 21, 390–403 (2023).

Article CAS PubMed Google Scholar

Hurley, S. J., Wing, B. A., Jasper, C. E., Hill, N. C. & Cameron, J. C. Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria. Sci. Adv. 7, eabc8998 (2021).

Article CAS PubMed PubMed Central Google Scholar

Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2] aq: theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).

Article CAS Google Scholar

Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).

Article CAS PubMed Google Scholar

Hamilton, T. L., Bryant, D. A. & Macalady, J. L. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ. Microbiol. 18, 325–340 (2016).

Article CAS PubMed Google Scholar

Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).

Article CAS Google Scholar

Freeman, K. H., Hayes, J. M., Trendel, J.-M. & Albrecht, P. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343, 254–256 (1990).

Article CAS PubMed Google Scholar

Hayes, J. M., Freeman, K. H., Popp, B. N. & Hoham, C. H. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem. 16, 1115–1128 (1990).

Article CAS PubMed Google Scholar

Hayes, J. M. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev. Mineral. Geochem. 43, 225–277 (2001).

Article CAS Google Scholar

van der Meer, M. T. J., Schouten, S. & Damsté, J. S. S. The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org. Geochem. 28, 527–533 (1998).

Article Google Scholar

Crick, I. H., Boreham, C. J., Cook, A. C. & Powell, T. G. Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, Northern Australia II: assessment of source rock potential. AAPG Bull. 72, 1495–1514 (1988).

CAS Google Scholar

Meyer, K. M. & Kump, L. R. Oceanic Euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).

Article CAS Google Scholar

Mukherjee, I. et al. Pyrite trace-element and sulfur isotope geochemistry of paleo-mesoproterozoic McArthur Basin: proxy for oxidative weathering. Am. Mineralogist: J. Earth Planet. Mater. 104, 1256–1272 (2019).

Article Google Scholar

Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

Article CAS Google Scholar

Brocks, J. J. & Schaeffer, P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim. Cosmochim. Acta 72, 1396–1414 (2008).

Article CAS Google Scholar

Sakata, S. et al. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of biomarker records. Geochim. Cosmochim. Acta 61, 5379–5389 (1997).

Article CAS PubMed Google Scholar

Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).

Article CAS PubMed Google Scholar

Graham, J. E. & Bryant, D. A. The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 190, 7966–7974 (2008).

Article CAS PubMed PubMed Central Google Scholar

French, K. L., Birdwell, J. E. & Berg, V. Biomarker similarities between the saline lacustrine Eocene Green River and the Paleoproterozoic Barney Creek Formations. Geochim. Cosmochim. Acta 274, 228–245 (2020).

Article CAS Google Scholar

Smith, D. A., Steele, A., Bowden, R. & Fogel, M. L. Ecologically and geologically relevant isotope signatures of C, N, and S: okenone producing purple sulfur bacteria part I. Geobiology 13, 278–291 (2015).

Article CAS PubMed Google Scholar

Smith, D. A., Steele, A. & Fogel, M. L. Pigment production and isotopic fractionations in continuous culture: okenone producing purple sulfur bacteria Part II. Geobiology 13, 292–301 (2015).

Article CAS PubMed Google Scholar

Posth, N. R. et al. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno. Geobiology 15, 798–816 (2017).

Article CAS PubMed Google Scholar

Sattley, W. M. et al. Complete genome of the thermophilic purple sulfur bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae. Photosynthesis Res. 151, 125–142 (2021).

Ohkouchi, N. et al. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments. Environ. Microbiol. 7, 1009–1016 (2005).

Article CAS PubMed Google Scholar

Hartgers, W. A., Schouten, S., Lopez, J. F., Damsté, J. S. S. & Grimalt, J. O. 13C-contents of sedimentary bacterial lipids in a shallow sulfidic monomictic lake (Lake Cisó, Spain). Org. Geochem. 31, 777–786 (2000).

Article CAS Google Scholar

Schouten, S. et al. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake). Geochim. Cosmochim. Acta 65, 1629–1640 (2001).

Article CAS Google Scholar

Johnston, D. T., Wolfe-Simon, F., Pearson, A. & Knoll, A. H. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc. Natl Acad. Sci. USA 106, 16925–16929 (2009).

Article CAS PubMed PubMed Central Google Scholar

Bryant, D. et al. in Functional Genomics and Evolution of Photosynthetic Systems Advances in Photosynthesis and Respiration Vol. 33 (eds Burnap, R. & Vermaas, W.) 47–102 (Springer, 2012).

Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004).

Article CAS PubMed Google Scholar

Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat. Geosci. 12, 375–380 (2019).

Article CAS Google Scholar

Johnston, D. T. et al. Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochim. Cosmochim. Acta 72, 4278–4290 (2008).

Article CAS Google Scholar

Hamilton, T. L. et al. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. Geobiology 12, 451–468 (2014).

Article CAS PubMed Google Scholar

Wilbanks, E. G. et al. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ. Microbiol. 16, 3398–3415 (2014).

Article CAS PubMed PubMed Central Google Scholar

Sinninghe Damsté, J. S., Van Duin, A. C. T., Hollander, D., Kohnen, M. E. L. & De Leeuw, J. W. Early diagenesis of bacteriohopanepolyol derivatives: formation of fossil homohopanoids. Geochim. Cosmochim. Acta 59, 5141–5157 (1995).

Article Google Scholar

Birgel, D. et al. Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Org. Geochem. 37, 1289–1302 (2006).

Article CAS Google Scholar

Brocks, J. J. et al. Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773 (2023).

Article CAS PubMed Google Scholar

Tang, T. et al. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophically. Geobiology 15, 324–339 (2017).

Article CAS PubMed Google Scholar

Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995).

Article CAS PubMed Google Scholar

Close, H. G., Bovee, R. & Pearson, A. Inverse carbon isotope patterns of lipids and kerogen record heterogeneous primary biomass. Geobiology 9, 250–265 (2011).

Article CAS PubMed Google Scholar

Imhoff, J. F. in Sulfur Metabolism in Phototrophic Organisms Advances in Photosynthesis and Respiration Vol. 27 (eds Hell, R. et al.) 269–287 (Springer, 2008).

Liu, Z. et al. ‘Candidatus Thermochlorobacter aerophilum:’ an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J. 6, 1869–1882 (2012).

Stamps, B. W., Corsetti, F. A., Spear, J. R. & Stevenson, B. S. Draft genome of a novel Chlorobi member assembled by tetranucleotide binning of a hot spring metagenome. Genome Announce. Genome Announce. 2, e00897-14 (2014).

Article Google Scholar

Hoffman, P. F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J. Afr. Earth. Sci. 28, 17–33 (1999).

Article CAS Google Scholar

Crockford, P. W. et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–616 (2018).

Article CAS PubMed Google Scholar

Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289 (2011).

Article Google Scholar

Page, R. W. & Sweet, I. P. Geochronology of basin phases in the western Mt Isa Inlier, and correlation with the McArthur Basin. Aust. J. Earth Sci. 45, 219–232 (1998).

Article CAS Google Scholar

Bull, S. W. Sedimentology of the Palaeoproterozoic Barney Creek formation in DDH BMR McArthur 2, southern McArthur basin, northern territory. Aust. J. Earth Sci. 45, 21–31 (1998).

Article Google Scholar

Rawlings, D. J. Stratigraphic resolution of a multiphase intracratonic basin system: the McArthur Basin, northern Australia. Aust. J. Earth Sci. 46, 703–723 (1999).

Article Google Scholar

Jackson, M. J., Muir, M. D. & Plumb, K. A. Geology of the Southern McArthur Basin, Northern Territory Vol. 223 (Australian Government Pub. Service, 1987).

Jarrett, A. J. M., Schinteie, R., Hope, J. M. & Brocks, J. J. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material. Org. Geochem. 61, 57–65 (2013).

Article CAS Google Scholar

Jiang, A., Zhou, P., Sun, Y. & Xie, L. Rapid column chromatography separation of alkylnaphthalenes from aromatic components in sedimentary organic matter for compound specific stable isotope analysis. Org. Geochem. 60, 1–8 (2013).

Article Google Scholar

Ellis, L., Kagi, R. I. & Alexander, R. Separation of petroleum hydrocarbons using dealuminated mordenite molecular sieve. I. Monoaromatic hydrocarbons. Org. Geochem. 18, 587–593 (1992).

Article CAS Google Scholar

Kelly, A. E., Love, G. D., Zumberge, J. E. & Summons, R. E. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia. Org. Geochem. 42, 640–654 (2011).

Article CAS Google Scholar

Summons, R. E. & Powell, T. G. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim. Cosmochim. Acta 51, 557–566 (1987).

Article CAS Google Scholar

Harris, D., Horwáth, W. R. & Van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon‐13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).

Article CAS Google Scholar

Download references

Financial support was provided via the Simons Foundation under the auspices of Simons Collaboration on the Origin of Life (grant no. 290361FY18 to R.E.S.). G.P.F. and M.M.P. were supported by the National Science Foundation Integrated Earth Systems award EAR (grant no. 1615426 to G.P.F). X.Z. was sponsored by the Shanghai Pujiang Programme. G.I. acknowledges receipt of a MISTI Global Seed Award. We recognize formative discussions with various members of the Summons Laboratory, particularly Benjamin Uveges who helped with provision of graphics. R.E.S. thanks the Hanse-Wissenschaftskolleg for support during the finalization of this report.

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Xiaowen Zhang, Madeline M. Paoletti, Gareth Izon, Gregory P. Fournier & Roger E. Summons

School of Oceanography, Shanghai Jiao Tong University, Shanghai, China

Xiaowen Zhang

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

R.E.S. conceived the study and secured the funding to support the research. G.P.F. and M.M.P. independently conducted the phylogenomic analysis. X.Z. developed and verified the analytical procedure, eradicating the UCM that allowed isotopic analysis of the BCF carotenoids. X.Z. collected the isotopic data with laboratory support from G.I. X.Z. wrote the initial draft of the paper after which all authors contributed.

Correspondence to Xiaowen Zhang or Roger E. Summons.

The authors declare no competing interests.

Nature Ecology & Evolution thanks Alexis Gilbert, Kliti Grice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

Zhang, X., Paoletti, M.M., Izon, G. et al. Late acquisition of the rTCA carbon fixation pathway by Chlorobi. Nat Ecol Evol (2023). https://doi.org/10.1038/s41559-023-02147-0

Download citation

Received: 10 February 2023

Accepted: 30 June 2023

Published: 03 August 2023

DOI: https://doi.org/10.1038/s41559-023-02147-0

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

SHARE